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ABSTRACT  22 

Satellite telemetry and animal movement models advance our ability to remotely monitor the 23 

behavior of wide-ranging species. Understanding how different behaviors (e.g. foraging) are 24 

shaped by dynamic environmental features is fundamental to understanding ecological 25 

interactions and the impact of variability. In this study we deployed satellite-linked tags on 26 

humpback whales (Megaptera novaeangliae) and used state-space models to estimate locations 27 

and to infer underlying behavioral states. We then modelled the association between whale 28 

behavior (e.g. foraging or transiting) and environmental variables using linear mixed-effect 29 

models. We identified the importance of two recently discovered Southern Ocean feeding areas 30 

for Oceania humpback whales as well as the key environmental drivers affecting whale behavior. 31 

We detected behavioral differences between whales utilizing the two adjacent feeding regions 32 

(~2,000 km apart), which were likely caused by animals trying to efficiently locate prey in relation 33 

to the dynamic environmental characteristics of each habitat. We observed a seasonal pattern 34 

in foraging behavior, with the peak occurring in the middle of summer. Whales also foraged 35 

more intensively with increasing proximity to areas from which the ice edge had recently 36 

retreated, suggesting heightened productivity in these areas. The relationship between the 37 

animals and the physical features of the seascape, as well as the behavioral plasticity observed, 38 

could have implications for the future recovery of these whales in a changing Southern Ocean.   39 

 40 

Key words:  41 

Foraging behavior; Habitat use; Migration; Telemetry; Whales   42 
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INTRODUCTION 43 

 44 

Many animal behaviors, such as movement and habitat use, are driven by responses to internal 45 

cues as well as the external conditions experienced by the animal (Nathan et al. 2008). 46 

Understanding how the physical environment shapes the behavior and distribution of animals 47 

as they try to satisfy their resource requirements is a fundamental topic in behavioral ecology 48 

(e.g. Ballance et al. 2006; Aarts et al. 2008; Davies et al., 2012). A wide range of animals from 49 

moths to caribou (Rangifer tarandus) migrate between critical habitats following pulses in 50 

resource availability and abundance (Jiang et al. 2011; Le Corre et al. 2017). In many terrestrial 51 

and aquatic taxa the decision to depart for a new habitat is often controlled by variables such as 52 

photoperiod, temperature, snow fall and severe weather at the initial location, at which point 53 

the animals cannot predict the habitat conditions at the end destination (Jonsson and Ruud-54 

Hansen 1985; Vøllestad et al. 1986; Cotton 2003; Balbontín et al. 2009; Jiang et al. 2011; Rivrud 55 

et al. 2016). Memory of long-term average conditions may also play a role in directing migrants 56 

to their destination (Bracis and Mueller 2017; Abrahms et al. 2019). Upon arrival at a new 57 

location resources, such as prey, are often patchily distributed throughout space and time, at 58 

which point animals initiate search strategies to locate and secure prey (Benhamou 1992; Boyd 59 

1996; Sims et al. 2008; Humphries et al. 2010; Carroll et al. 2017). In marine systems specifically, 60 

biological productivity can be highly variable due to the heterogeneity of the many physical 61 

processes in the environment (Haury et al. 1978). This results in some habitats being more 62 

productive than others, which in turn influences prey availability and predator behavior. To 63 

forage efficiently predators must move through their dynamic environment in search of prey 64 

while maximizing time spent foraging in the most productive areas (Stephens and Krebs 1986; 65 

Fauchald and Tveraa 2006). In patchy environments individuals may even adjust aspects of their 66 

foraging behavior depending on the external environmental conditions (Weimerskirch 2007; 67 

Sebastiano et al., 2012; Kirchner et al. 2018).  68 
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 Obtaining direct observations of movement and behavior in wide-ranging predators can be 69 

challenging, and more indirect techniques, such as animal-borne transmitters and data loggers, 70 

are often required to detect and identify behavior. Advancements in satellite telemetry and 71 

tagging technology have improved the ability to remotely collect animal movement data at high 72 

spatial and temporal resolutions (Hussey et al. 2015; Gurarie et al. 2016; Chimienti et al. 2017). 73 

Different movement models can be applied to these remotely collected data to identify 74 

underlying behavioral states such as foraging (Morales et al. 2004; Jonsen et al. 2005, 2006; 75 

Michelot et al. 2017). Various statistical models can then be used to link animal locations and 76 

behavior with ecological variables. Such models are useful tools for explaining spatial 77 

distribution patterns of highly mobile animals, for identifying critical habitats, and they have 78 

many applications including addressing management and conservation questions (Mandel et al. 79 

2008; Gregr et al. 2013; Guisan et al. 2013).  80 

In the Southern Hemisphere, humpback whales (Megaptera novaeangliae) migrate thousands 81 

of kilometers annually from the tropics to the Southern Ocean to feed on their main prey, the 82 

Antarctic krill (Euphausia superba; Kawamura 1994; Murase et al. 2002). The endogenous and 83 

exogenous cues used by the whales to navigate to the feeding grounds and to search for prey 84 

remains unresolved (Horton et al. 2011, 2017; Torres, 2017). Directly observing the foraging 85 

behavior and characterizing the foraging habitat of large marine predators, such as humpback 86 

whales, in the Southern Ocean is notoriously difficult due to the logistical challenges associated 87 

with accessing this remote and vast area (Griffiths 2010). Therefore, our knowledge of the fine-88 

scale behavior and patterns of habitat use by humpback whales in this region remains limited, 89 

compared to for example the more accessible Antarctic Peninsula (e.g. Friedlaender et al. 2013, 90 

2016).  91 

During the commercial whaling era, Southern Hemisphere humpback whale stocks were highly 92 

overexploited and hunted to near extinction (Ivashchenko and Clapham 2014; Clapham and 93 

Baker 2017). Since being granted protection from whaling, humpback populations have shown 94 

variable recovery. The Oceania humpback whales, comprising whales from multiple breeding 95 
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ground subpopulations from the Pacific Islands (spanning New Caledonia to French Polynesia) 96 

are estimated to be <50% of pre-exploitation numbers and recovering more slowly than the 97 

neighboring east Australian population (Childerhouse et al. 2008; Constantine et al. 2012; 98 

International Whaling Commission 2015). To date there has been little information available on 99 

the Oceania humpback whales within the Southern Ocean feeding grounds, and we only recently 100 

revealed their migration paths and location of the feeding grounds (Riekkola et al. 2018). As a 101 

consequence, we do not know whether the feeding behavior and patterns of habitat use by 102 

these humpback whales could be linked to the different population recovery rates (International 103 

Whaling Commission 2015). 104 

Here we applied a movement model to satellite tagging data of humpback whales on their 105 

Southern Ocean feeding grounds to infer underlying behavioral states: transiting and area 106 

restricted search (ARS), a behavior indicative of foraging (Weinstein et al. 2017; Andrews-Goff 107 

et al. 2018). We expected that aspects of whale foraging behavior would change throughout the 108 

feeding season. For example, we hypothesized that there would be an increase in foraging effort 109 

as prey becomes more abundant with the onset of spring and summer. We then used a statistical 110 

model to investigate the relationship between the inferred behavioral states (specifically the 111 

occurrence of ARS-foraging) and different environmental variables. We expected the whales’ 112 

behavior to be affected by different environmental factors, and that behavioral differences 113 

would exist between animals utilizing different regions of the Southern Ocean. By linking whale 114 

movement data and behavioral changes to the conditions of their foraging habitat, this study 115 

ultimately contributes to a better understanding of the behavior of wide-ranging predators.  116 

 117 

MATERIALS AND METHODS 118 

Satellite tag deployment 119 

Wildlife Computers (Redmond, WA, USA) SPOT 5 Platform Transmitting Terminals (PTTs) were 120 

attached to 25 adult humpback whales during the peak of their southern migration past the 121 
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Kermadec Islands, New Zealand, between September and October 2015 (Figure 1). The tags 122 

were deployed using a modified version of the Air Rocket Transmitter System (Heide-Jørgensen 123 

et al. 2001) at a pressure of 10-12 bars. Observed locations were calculated by the Argos System 124 

using the Doppler Effect on transmission frequency when multiple messages from a tag were 125 

received by a satellite. An estimated error and a location class (in descending order of accuracy: 126 

3, 2, 1, 0, A, B, Z) were assigned to each location (see Argos user’s manual 2016). Location classes 127 

A and B have no accuracy estimation and Z is an invalid location. The tags were duty cycled to 128 

transmit for 21 hours each day to maximize the time with overhead Argos satellites. The 129 

maximum number of transmissions per day was set to 600 at a repetition rate of 45s. 130 

Reproductive status (mother with a calf, or adult) of the tagged whales was inferred in the field 131 

based on the presence of a calf closely associated with the satellite tagged animal (Clapham et 132 

al. 1999). Molecular sex identification was conducted using tissue samples collected at the time 133 

of tagging (Riekkola et al. 2018).  134 

 135 

Data processing and hierarchical state-space model 136 

Raw Argos locations were speed filtered using the R package argosfilter (Freitas et al. 2008) at 137 

a conservative maximum speed of 36km/h to remove only highly erroneous and unrealistic 138 

locations. We used a hierarchical version of a Bayesian state-space model (SSM; Jonsen et al. 139 

2005, 2006) to estimate locations (via an observational model) and behavioral states (via a 140 

movement model). We used a 6-h time-step in the model to provide detailed whale movement 141 

data. Obtaining whale data on an even finer scale was not necessary given the low resolution of 142 

some of the environmental covariates (see section ‘Explanatory variables for statistical model’ 143 

and Table 1). The SSM was fitted in R (version 3.5.1, R Core Team 2018) using the software JAGS 144 

(Plummer 2013) and the R packages rjags (Plummer 2016) and bsam (Jonsen et al. 2015). Where 145 

a gap of >1 day existed in the satellite data transmission, the individual track was split and ran 146 

as segments to avoid interpolating over long periods of time with no data. Two Markov chain 147 

Monte Carlo (MCMC) chains were run in parallel, each for a total of 200,000 simulations. The 148 
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first 100,000 samples were discarded as a ’burn-in’, and the remaining samples were thinned, 149 

retaining every 100th sample to reduce autocorrelation. The final 2,000 samples were used to 150 

compute the posterior distribution of the model parameter estimates: the mean turning angles, 151 

and movement persistence (i.e. the autocorrelation in speed and direction). The behavioral 152 

mode estimate (b), ranging between 1 and 2, was inferred from the means of the MCMC 153 

samples. A behavioral mode close to 1 (b<1.25) indicates transiting behavior, which is persistent 154 

and highly directional movement with low turning angles (near 0°). Animals are expected to be 155 

in transiting mode during migration or when traveling between favorable locations (e.g. prey 156 

patches). A behavioral mode close to 2 (b>1.75) indicates area-restricted search (ARS) behavior, 157 

a more variable movement with large turning angles (near 180°) and increased rate of turning. 158 

ARS is generally considered to be indicative of foraging, resting or breeding behavior (e.g. 159 

Weinstein et al. 2017; Andrews-Goff et al. 2018). Locations with a mean b estimate between 160 

1.25 and 1.75 were treated as ‘uncertain’. 161 

 162 

Explanatory variables for statistical model 163 

We used both static and dynamic variables estimated at each state-space modelled location 164 

as explanatory variables to identify those that had most effect on the whales’ behavioral mode 165 

(specifically the occurrence of ARS-foraging). We selected environmental variables which, based 166 

on prior knowledge, are likely to be biologically relevant (e.g. Friedlaender et al. 2011; Bombosch 167 

et al. 2014; Trudelle et al. 2016; Andrews-Goff et al. 2018; Table 1), and that were available for 168 

the entire spatial extent of location data.  169 

Daily sea ice concentration data were obtained from the National Snow and Ice Data Center 170 

(NSIDC, https://nsidc.org/data). Distance to the ice edge was calculated from the daily ice 171 

concentration as the minimum distance between whale locations and the 15% sea ice 172 

concentration contour (e.g. Gloersen et al. 1992; Stammerjohn and Smith 1997). One month 173 

and two-month lags were calculated as the distance of each SSM-estimated whale location to 174 

where the ice edge was one month and two months prior. It takes approximately one to two 175 
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months after ice melt for productivity to peak in the marginal ice zone (Lehodey et al. 1998; 176 

Arrigo et al. 2008; Dalpadado et al. 2014). Altimeter derived daily sea surface heights (SSH) and 177 

daily sea surface current velocity data were obtained using E.U. Copernicus Marine Service 178 

Information (http://marine.copernicus.eu). SSH and sea surface current velocity gradients can 179 

be used to trace the locations of the Antarctic Circumpolar Current fronts, and therefore by 180 

using these variables we could account for possible interactions with the fronts (e.g. Sokolov 181 

and Rintoul 2009). Sea surface current velocity was log transformed prior to analysis. Data on 182 

sea ice, SSH, and sea surface current velocity were obtained through the Australian Antarctic 183 

Data Centre and extracted using the R package raadtools (Sumner 2016). 184 

Bathymetry was obtained from the International Bathymetric Chart of the Southern Ocean 185 

(IBCSO) digital bathymetric model of the circum-Antarctic waters (Arndt et al. 2013). IBCSO is a 186 

regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO) and the 187 

digital bathymetric model is publicly available (www.ibcso.org). Slope was derived from the 188 

IBCSO digital bathymetric model using the ‘slope’ tool in ArcGIS (version 10.5, Esri, Redlands, CA, 189 

USA) and was log transformed prior to analysis.  190 

Month for each point was obtained from the SSM estimated locations. We chose to include 191 

month as a continuous variable in the model. Therefore, November, the first month for which 192 

there were data within the feeding grounds, was labelled ‘0’ (followed by December = 1 through 193 

to June = 7) in order to set November as the baseline and to maintain chronological order. 194 

Prior analysis of the satellite tags had revealed that the whales diverged to two broad feeding 195 

regions (Riekkola et al. 2018). To make comparisons between these feeding areas, each location 196 

was assigned a ‘region’ based on whether it occurred west (Ross Sea) or east (Amundsen and 197 

Bellingshausen Seas) of the 130°W meridian (Figure 1). Studies have identified regional trends 198 

in the Antarctic sea ice variability, with increasing sea ice extent occurring in the Ross Sea region, 199 

and contrasting decrease in sea ice extent occurring in the Amundsen and Bellingshausen Seas 200 

region (e.g. Zwally et al. 2002; Turner et al. 2009). Future ocean and sea-ice changes are also 201 

projected to affect the growth rates of krill (the whales’ main prey), with modelled high potential 202 
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growth rates in Ross Sea, and low or negative potential growth rates in the Amundsen and 203 

Bellingshausen Seas (Murphy et al., 2017). 204 

 205 

Environmental drivers of behavior 206 

To assess the influence of the explanatory variables on the SSM estimated behavioral modes, 207 

we fitted a series of linear mixed-effect models (LMMs) by maximum likelihood (ML) using the 208 

R software package nlme (Pinheiro et al. 2018). Similar to previous studies, we adjusted the 209 

behavioral mode (b) to range between 0 and 1 (by subtracting 1 from each value), after which 210 

the variable (continuous) was logit transformed (O’Toole et al. 2015, Cerchio et al. 2016). We 211 

dealt with sample proportions equal to exactly zero or one by adding the smallest non-zero 212 

proportion (ε) to the numerator and denominator of the logit function (i.e. log(y+ε /1-y+ε)) as 213 

per Warton and Hui (2011). Individual whales (i.e. unique tag numbers/PTTs) were fitted as a 214 

random effect to account for individual variation, and a first order AR(1) autocorrelation 215 

structure for each individual whale was assumed. We first built LMMs with the full data set using 216 

region as a factorial variable, and then split the data to build region specific models. 217 

The remotely sensed variables SSH and sea surface current speed included missing values 218 

(n=31 and n=35 respectively, representing 0.9% of the data), most likely due to sea ice coverage. 219 

To maintain the same number of observations between models, the rows including missing 220 

values were removed from the data set prior to model fitting. The variables sea surface current 221 

velocity and slope were log transformed prior to analysis. A quadratic term was included for 222 

month and the different ‘distance to ice edge’ candidate variables following examination of the 223 

relationships visually. All continuous variables were tested for pairwise correlation (Electronic 224 

Supplementary Material, Figure ESM 1). SSH and log transformed sea surface current velocity 225 

had a Spearman correlation of 0.66. All other variables showed a Spearman correlation of ≤0.5.  226 

As the different ‘distance to ice edge’ candidate variables represent the same environmental 227 

process, we included each of these terms sequentially during the model building (Table 2). 228 

Several model combinations of the different main effects and various interaction terms were 229 
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run (Table 2). For model selection we explored both backward selection following Zuur et al. 230 

(2009; starting with a full model with all explanatory variables included, dropping individual 231 

variables one by one until all remaining variables are significant) and automated model selection 232 

(function dredge in R package MuMIn; Bartoń 2018) to check for all possible variable 233 

combinations. We used the Akaike Information Criterion (AIC) to select the most parsimonious 234 

(lowest AIC value) model as the criterion penalizes for the use of more variables (Burnham and 235 

Anderson 2002; Burnham et al. 2011). The best model based on AIC was then run using 236 

restricted maximum likelihood (REML) to obtain the final parameter estimates (as per Zuur et 237 

al. 2009). The normality of residuals was checked graphically. 238 

 239 

RESULTS 240 

 Whale movement and behavior 241 

Out of 25 tags deployed, 18 transmitted sufficient data for the SSM analysis (Table 3). This 242 

included 5 females without calves, 6 females with calves, 5 males and 2 individuals of unknown 243 

sex (PTT102211 had no tissue sample; molecular sex identification for PTT112722 was 244 

unsuccessful). Ten tags had data gaps of >1 day (range: 2-76 d), excluding those tags that did not 245 

begin transmission straight after deployment. The average number of location fixes per day 246 

received from a tag was 22 (range: 10-42).  247 

The tags of 14 individual humpback whales transmitted data within the feeding grounds south 248 

of 60°S, covering a temporal period from November 2015 to June 2016 and a spatial range from 249 

175°E to 80°W. The number of active tags transmitting data varied between months (range: 1-250 

14; Table 4). The SSM distinguished well between the two behavioral states (Electronic 251 

Supplementary Material, Table ESM 2) and classified 6.3% of locations as ARS-foraging, and 252 

79.3% of locations as transiting behavior, with the remaining 14.4% classified as uncertain 253 

(Figure 1). The average behavioral mode (i.e. likelihood of ARS-foraging behavior) increased as 254 

the feeding season progressed, peaking in March (February-March for whales on the Ross Sea 255 

side only; Figure 2a). Overall, the whales on the Ross Sea side were consistently farther away 256 
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from the continental shelf break (Figure 1) and from the ice edge than the whales in the 257 

Amundsen and Bellingshausen Seas region (Figure 2b). In general, the whales’ distance from the 258 

ice edge increased between December and January (December-February for Ross Sea whales) 259 

and decreased between January and April (February-May for Ross Sea whales; Figure 2b).  260 

 261 

Environmental drivers of behavior 262 

Out of the highly correlated variables SSH was identified as being a more important predictor 263 

than log transformed sea surface current speed and was therefore kept in the model. 264 

Examination of the different ‘distance to ice edge’ scenarios resulted in 2-month lag being 265 

identified as the most relevant, and out of several trials with different interaction terms 266 

interaction between month (representing time) and region was found to be most significant 267 

(Table 2). The most parsimonious model identified month, 2-month lag in the distance to the ice 268 

edge, SSH and the interaction between region and month as important predictors of the 269 

behavioral state of humpback whales within their Southern Ocean feeding grounds (Table 2, 270 

Table 5). Non-linear relationships indicated that the whales were more likely to exhibit ARS-271 

foraging behavior during the middle of the summer feeding season, and near where the marginal 272 

ice-edge had been two months prior. Humpback whales were also more likely to exhibit ARS-273 

foraging behavior at lower SSH values, and there was a significant interaction between region 274 

and month (Table 5, Figure 3). The model provided some indication of possible differences 275 

between regions. The variable ‘region’ was marginally significant (F-test p=0.06), although the 276 

coefficient estimate was not significantly different from zero (t-test p=0.36).  Dredge automated 277 

model selection identified region to be a significant variable in 70% of 1664 model variations.  278 

 279 

DISCUSSION 280 

Humpback whales foraging in the Southern Ocean changed their ranging behavior and habitat 281 

use patterns throughout the summer feeding season suggesting that behavioral plasticity is 282 

important for this large predator. The changes were related to the environmental features of 283 
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the different habitats, in particular to an important lag effect in the ice edge dynamics, and 284 

consequently the whales ended up utilizing these areas very differently. Similar to other long-285 

distance migrants that move between critical habitats for different life functions (Both and 286 

Visser 2001; Le Corre et al. 2017), these whales time their arrival at their feeding grounds to 287 

exploit the habitat optimally without knowing the precise habitat conditions when beginning 288 

their migration ~7,000km north. The large-scale sensitivity to environmental cues enabling 289 

prediction of conditions in another geographic location is key to the success of migratory 290 

animals, e.g. barn swallow (Hirundo rustica L., Balbontín et al. 2009), caribou (Le Corre et al. 291 

2017).  292 

  293 

Characterizing whale movement and behavior on the Southern Ocean feeding grounds 294 

The SSM results revealed two important resource sites for Oceania humpback whale foraging; 295 

one within the Amundsen and Bellingshausen Seas and one north of the Ross Sea, ~2,000 km 296 

west (Figure 1). The majority of ARS-foraging locations for the whales within the Amundsen and 297 

Bellingshausen Seas occurred near the continental shelf break (within ~200km) where high 298 

densities of krill are expected to be found due to life history related movement (e.g. Pauly et al. 299 

2000; Nicol 2006; Davis et al. 2017), as well as near the ice edge (~210km on average) where ice 300 

melt stimulates primary production which in turn supports elevated concentrations of higher 301 

trophic level organisms (e.g. Brierley et al. 2002; Nicol 2006; Meyer et al. 2017). In contrast, the 302 

main aggregation of ARS-foraging locations north of the Ross Sea did not occur near the shelf 303 

break (>500km away; Figure 1) nor the ice edge (~370km on average; Figure 2b). However, the 304 

ARS-foraging locations of the Ross Sea whales occurred in a reported hotspot, with increased 305 

chlorophyll a as an indicator of primary production (Schine et al. 2015). The observed differences 306 

between the foraging regions suggest that humpback whales utilize different environmental 307 

cues, with some cues being of greater importance for whales in one area than the other.  308 

Although we were not able to confirm ARS behavior identified by our SSM as foraging, both 309 

previous studies and the general knowledge about humpback whale behavior south of 60°S 310 
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suggest that ARS behavior identified by the SSM is largely foraging (Chittleborough 1965; 311 

Weinstein et al. 2017; Andrews-Goff et al. 2018). With this assumption in mind, the high overall 312 

amount of transiting behavior south of 60°S might serve as an indicator of prey distribution, 313 

whereby whales may have to move quite long distances between prey patches. For instance, 314 

the Amundsen and Bellingshausen Seas reportedly have generally low chlorophyll a 315 

concentration with only isolated pockets of high productivity (e.g. Constable et al. 2003; 316 

Stambler 2003). This could result in smaller prey aggregations that are highly spread out, 317 

increasing the whales’ need to transit between foraging patches.  318 

Humpback whales in the northern hemisphere have been shown to exhibit strong maternally 319 

inherited feeding ground fidelity (Palsbøll et al. 1995; Stevick et al., 2006; Baker et al., 2013). In 320 

contrast, humpback whales from discrete Oceania breeding grounds do not show such clear 321 

patterns of feeding ground fidelity (Rosenbaum et al. 2017). Additionally, as satellite tagged 322 

Oceania mothers with calves migrated to the Ross Sea and given that whales still also migrate 323 

to the Amundsen and Bellingshausen Seas (Riekkola et al. 2018), these whales may not have 324 

maternally inherited feeding grounds. Knowing the approximate location of profitable foraging 325 

areas and consistently returning to them may increase foraging success and individual fitness, 326 

which could be highly advantageous for the slowly recovering Oceania population. Memory of 327 

long-term average conditions may be more important for cetaceans than previously thought 328 

(Abrahms et al. 2019), and some marine species in the Southern Ocean have been found to 329 

consistently return to foraging areas that may have arisen as a consequence of predictable 330 

oceanographic conditions (Weimerskirch 2007; McIntyre et al. 2017; Sztukowski et al. 2018). 331 

Data on the Oceania whales across multiple years could help identify persistent patterns in the 332 

whales’ behavior to determine the role of memory, and assess the stability of the two feeding 333 

areas over time, especially given the predicted future changes in ice dynamics due to climate 334 

change (de la Mare 1998; Turner et al. 2009). Changes in global oceanographic events are 335 

becoming more common, for example they are likely to have disrupted the long-term feeding 336 

ground fidelity in humpback whales in southern Alaska (Neilson & Gabriele 2019). 337 
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 338 

Environmental effects on whale movement and behavior on the Southern Ocean 339 

feeding grounds 340 

Because large baleen whales have very high energetic demands (Lockyer 1981), we expect that 341 

humpback whale behavior on the feeding grounds is largely driven by the distribution and 342 

availability of krill; especially given they effectively undertake all foraging during the ~five 343 

months they spend in the Southern Ocean. Previous studies have linked the behavior and 344 

distribution of humpback whales to krill abundance and distribution (e.g. Friedlaender et al. 345 

2006, 2011, 2013; Curtice et al. 2015). However, as obtaining reliable data on krill abundance 346 

and distribution for the large temporal and spatial extent covered by our satellite telemetry data 347 

is all but impossible, we examined how the behavior of these whales was affected by more easily 348 

recorded, remotely sensed environmental parameters. In the absence of easily obtained prey 349 

field data understanding how marine top predators, such as whales, pinnipeds and seabirds, 350 

respond to more easily recorded variables (which act as proxies for prey availability) is often the 351 

only approach available (Raymond et al. 2015; Reisinger et al. 2018). 352 

The best LMM indicated that the inferred behavioral states of humpback whales within the 353 

Southern Ocean feeding grounds were most affected by timing within the feeding season 354 

(month), where the marginal ice edge was two months prior, SSH, and to some extent the region 355 

(Table 5, Figure 3). All these variables are thought to be linked to krill availability and distribution 356 

associated with local and regional scale oceanographic features. By targeting and favoring areas 357 

with environmental conditions that are associated with increased prey availability, large marine 358 

predators, such as humpback whales, can improve their foraging opportunities (Heerah et al. 359 

2016).  In the absence of prior knowledge regarding potential prey locations, whales might use 360 

environmental cues to place themselves in likely profitable foraging areas.   361 

As the feeding season progressed the likelihood of adopting ARS-foraging behavior increased, 362 

peaking in February-March (Figure 2a). This was expected as the whales would be finding 363 
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sufficient prey to feed on after several months of fasting, and as productivity should increase 364 

following the spring/summer ice melt (Lehodey et al. 1998; Arrigo et al. 2008; Dalpadado et al. 365 

2014). After the peak, the likelihood of ARS-foraging behavior decreased likely in response to 366 

productivity declining in late summer-autumn months, however data for the last two months 367 

came from only one whale (Table 4).  368 

The results indicated that foraging behavior was more likely to occur near where the ice edge 369 

was two months prior. As the sea ice melts, the ice-free waters promote phytoplankton blooms 370 

which in turn trigger grazers such as krill to aggregate at the sea ice edge (Nicol 2006; Arrigo et 371 

al. 2008). This link between humpback whales and the ice indicates that the whales do not 372 

actively track the ice edge itself, but instead the productivity that occurs following ice melt (i.e. 373 

after a time lag).  Organisms do not always respond immediately to changes in the physical or 374 

biotic environment. Animal population trends respond to fluctuations in the environment after 375 

appropriate time lags (e.g. Baker et al. 2007; Walker et al. 2013), however distribution and 376 

foraging behavior can also show lagged responses to environmental conditions (Pinaud and 377 

Weimerskirch 2005). Our findings therefore support the importance of including time-lagged 378 

variables when modelling the relationships between animals and their environment, which is 379 

applicable to both aquatic and terrestrial species across a broad array of ecosystems. 380 

The humpback whales were also more likely to exhibit ARS-foraging behavior at lower SSH 381 

values. Lower (more negative) SSH values are linked to meso-scale eddies, which stimulate 382 

productivity near the surface through vertical mixing of deep nutrient rich waters, and trap 383 

aggregations of buoyant and weekly swimming plankton and fish (Olson and Backus 1985; Nel 384 

et al. 2001; Hyrenbach et al. 2006). However, whether the whales can detect changes in SSH and 385 

relate them to krill presence is unknown. As noted above, areas with lower SSH are generally 386 

linked to productivity and prey, and SSH is therefore functioning as a proxy for prey in our model.  387 

There was some evidence that the behavioral mode of the whales was affected by the feeding 388 

region they were in, and the interaction between region and month suggests that the whales 389 

behave differently in the different regions during different points of the season (Figure 2a).  390 
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Animals are expected to strive to maximize foraging success while minimizing the associated 391 

effort and costs (MacArthur and Pianka 1966; Schoener 1971). Predators foraging in complex 392 

and patchy environments should therefore adjust their movements and foraging behavior 393 

according to prey availability (and density) to maximize foraging efficiency. They might for 394 

instance employ distinct foraging strategies in different habitats (Arthur et al. 2016). We expect 395 

that the observed regional foraging behaviors by the humpback whales are the result of region-396 

specific decisions made in response to the dynamic characteristics of the environment in each 397 

habitat, suggesting that there is behavioral plasticity in this population. Many ecological studies 398 

have treated conspecific individuals as ecological equivalents, but the existence of intraspecific 399 

plasticity in foraging behavior (in the form of dietary differences, variation in habitat use or 400 

foraging strategies for example) is widespread among taxonomic groups and can be ecologically 401 

important (Bolnick et al. 2003; Ceia and Ramos 2015; McHuron et al. 2018). The predicted 402 

climate change induced spatial variability in factors that influence krill populations, such as sea 403 

ice characteristics and seasonal dynamics, are likely to result in region-specific responses in the 404 

whales’ main prey (e.g. Constable et al. 2014), which might necessitate region-specific foraging 405 

strategies in the future. 406 

In order to respond dynamically to sensory cues from the dynamic environment whales likely 407 

use multimodal sensory systems (Carroll et al. 2017; Torres 2017). Additionally, species-habitat 408 

relationships are often scale dependent, and different environmental parameters may have a 409 

stronger influence on animals at different scales (Redfern et al. 2006; Ballance et al. 2006). For 410 

example, during long distance migration to the feeding grounds (thousands of kilometers) 411 

humpback whales, as well as other cetaceans, use large-scale oceanographic patterns and 412 

features to navigate (Horton et al. 2017; Torres 2017). Once near or within the feeding grounds 413 

the whales are expected to change their movement to a smaller-scale prey search pattern, and 414 

will likely utilize different, finer-scale environmental cues (Ballance et al. 2006; Doniol-Valcroze 415 

et al. 2007; Torres 2017; Kirchner et al. 2018). It is therefore important to use temporal and 416 

spatial scales that are appropriate for the main objectives of the analysis and relevant for the 417 
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ecology of the target species (e.g. Ballance et al. 2006; Redfern et al. 2006; Fernandez et al. 418 

2017). Unfortunately, the temporal and spatial scale used is often determined by the availability 419 

of the environmental data. We were not immune to this problem, yet we aimed to use 420 

resolutions closest to our modelled data to best capture the whales’ behavior patterns. Using 421 

different movement/behavioral modelling techniques (e.g. McClintock et al. 2015; McClintock 422 

and Michelot 2018) it can be possible to further improve the accuracy of the animal locations. 423 

In our case, due to the low resolution of many of the environmental covariates (raster data), 424 

improving the whale location estimates would have likely resulted in us sampling from the same 425 

environmental raster cell. In studies covering a smaller study area and having higher quality 426 

environmental data increasing the accuracy of the animal locations would be more paramount. 427 

Despite some caveats, using the available remotely sensed data and spatial modelling 428 

techniques enabled us to uncover the behavioral patterns of these whales spread over 4,000km 429 

across the Southern Ocean largely devoid of distinct land mass features, apart from the Antarctic 430 

continent. The whales’ ability to detect and use environmental cues to locate patchily 431 

distributed prey in this vast ocean environment is remarkable and identifying the key variables 432 

for these animals will help us better understand their behavior and how they might respond to 433 

changes in their environment. 434 

In many animal taxa (including insects, birds and mammals) the decision to begin migrating 435 

from one critical habitat to another often occurs in response to environmental conditions,  social 436 

cues or sexual hierarchy, and is highly affected by individual variation (Chittleborough 1965; 437 

Gunnarsson et al. 2006; Balbontín et al. 2009; Jiang et al. 2011; Rivrud et al. 2016; Berdahl et al. 438 

2017). Climate change has a variety of effects on the critical habitats of different animals, for 439 

example by altering the distribution and seasonal availability of food as well as the size of 440 

suitable breeding areas (Fitter and Fitter 2002; Walther et al. 2002; Derville et al. 2019). If the 441 

timing of migration relies on endogenous cues that are not affected by climate change 442 

(compared to e.g. weather cues), the migration of such species will not advance even though 443 

they need to arrive earlier on their breeding or feeding grounds (Both and Visser 2001). It is yet 444 
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unclear whether climate change will influence whale arrival at the Southern Ocean feeding 445 

grounds earlier, and whether this would have a positive or a negative effect on their fitness. 446 

Waiting for krill to become available could incur an energetic cost due to the wait time, yet the 447 

whales might adapt and prey switch which has, to forage more on already available prey; this 448 

has been documented in different humpback whale populations (e.g. Weinrich et al. 1992; 449 

Fleming et al. 2015). 450 

 451 

CONCLUSIONS  452 

Here we used spatial modelling techniques to identify underlying behavioral states from 453 

movement data for a wide-ranging marine predator inhabiting a remote area, and related those 454 

behaviors with environmental conditions. We identified two important Southern Ocean feeding 455 

areas for humpback whales and observed differences in behavior, likely related to decisions 456 

made about the local environmental variation between the two adjacent habitats. Behavioral 457 

plasticity is critical to survive in environments that are unpredictable and changing (Stien et al. 458 

2010; Wong and Candolin 2015; Courbin et al. 2017). This could therefore be of advantage to 459 

whales in a changing Southern Ocean, especially as the two feeding areas are experiencing 460 

different responses to climate change; sea ice increase in the Ross Sea, sea ice retreat in the 461 

Amundsen and Bellingshausen Seas (e.g. Zwally et al. 2002; Turner et al. 2009) and regional 462 

differences in food web structure (e.g. Murphy et al. 2012; Constable et al. 2014). Environmental 463 

changes may therefore elicit different behavioral and demographic responses for populations 464 

inhabiting different, yet adjacent, regions of the Southern Ocean. Having whales of the same 465 

population being subject to different environmental conditions provides an opportunity to study 466 

changes in their distribution and behavior within and between circum-Antarctic regions, which 467 

in turn can be used as indicators of change in the ecosystem (e.g. prey distribution) for all marine 468 

predators (Raymond et al. 2015). The phenomena of range shifts and behavioral adaptations in 469 

response to environmental change are better understood in the northern hemisphere where 470 

such events are more apparent (Both and Visser 2001; Post et al. 2009).  471 
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Tables and table legends 

Table 1. The unit of measure, source and resolution of the environmental predictor variables used to construct the species distribution models 

   Resolution 

Variable Definition and unit Source Spatial  Temporal  

Dynamic      

 Ice concentration (ice conc) Percentage of ocean area covered by sea ice National Snow and Ice Data Center (NSIDC) 25 x 25km Daily 

 Distance to ice edge (dist ice) Distance of whale location to ice edge (15% ice 

concentration; km) on the same day 

Derived from ice concentration 25 x 25km Daily 

 Distance to ice edge – 1-month lag (dist ice 

lag 1) 

Distance of whale location to where the ice edge was 1 

month prior 

Derived from ice concentration 25 x 25km Daily 

 Distance to ice edge – 2-month lag (dist ice 

lag 2) 

Distance of whale location to where the ice edge was 2 

months prior 

Derived from ice concentration 25 x 25km Daily 

 Sea surface height (SSH) Sea surface height (m) E.U. Copernicus Marine Service Information (CMEMS) 0.25 x 0.25° Daily 

 Sea surface current velocity (current) Surface current velocity (m/s) Derived from SSH 0.25 x 0.25° Daily 

Static      

 Bathymetry (bathy) Depth (m) International Bathymetric Chart of the Southern Ocean 

(IBCSO) 

500 x 500m  

 Slope Topographic gradient (degrees) Derived from bathymetry 500 x 500m  

Other     

 Month Month SSM estimated locations   

 Region Ross Sea or Amundsen and Bellingshausen Seas cut-off 

at 130°W 

SSM estimated locations   

  



  

 

  

 

Table 2. Model selection results of the best linear mixed-effect models to explain the effects of different variables on humpback whale behavioral 

mode (b).  

 

 Variables K AIC ΔAIC  

Comparison of different ice distance variables     

Month + Month2 + Region + dist ice lag 2 + dist ice lag 22 + Ice conc + SSH + bathy + slope(log) 13 18471.5  

Month + Month2 + Region + dist ice lag 1+ dist ice lag 12+ Ice conc + SSH + bathy + slope(log) 13 18475.2 3.7 

Month + Month2 + Region + dist ice + dist ice2 + Ice conc + SSH + bathy + slope(log) 13 18475.6 4.1 

Comparison of different interaction terms    

All models have the same base: Month + Month2 + Region + dist ice lag 2 + dist ice lag 22 + Ice conc + SSH + bathy + slope(log)  

     + Region*Month + Region*Month2 15 18449.9  

     + Region*SSH 14 18468.9 19.0 

     + Region* dist ice lag 2 + Region* dist ice lag 22 15 18471.2 21.3 

Reduced version of the best model    

Month + Month2 + Region + dist ice lag 2 + dist ice lag 22 + SSH + Region*Month + Region*Month2 12 18447.5  

All models include the individual whale (unique tag number, PTT) fitted as a random effect. For each candidate model we report the Akaike’s Information Criterion 

(AIC) and the change in AIC (∆AIC) compared to the best model of each scenario. K = number of parameters. The best overall model is bolded. 

  



  

 

  

 

Table 3. Summary of satellite tag deployments and tracking data for 18 humpback whales used in the state-space model. 

 

 

All tags were deployed at Raoul Island (Kermadec Islands, New Zealand). PTT = unique tag number. Only whales whose tags transmitted data south of 60°S were used in the linear mixed-effect model. 

F = female, M = male, U = unknown sex, and * denotes animals that had a calf. All dates are in UTC. Transmitting days = number of days when one or more locations were received. 

Data gaps = any gaps in data transmission >1 day in length, data gap length is in days, multiple data gaps for the same animal are separated with a comma. 

Percent of locations belonging to each of the seven Argos service provider assigned location classes. Location classes in a descending order of accuracy: 3, 2, 1, 0, A, B and Z. See Argos user’s manual 2016 

  

PTT 
Transmitted 

south of 60°S 

Sex (*=with 

calf) 

Deployment 

date 
First location Last location 

Transmitting 

days 

Data gaps 

(d1,d2,dn) 

Total no. of 

locations 

Mean no. locs/day 

(± SE; range) 
% Argos location class Mean time (h) 

between locs (± SE) 
3 2 1 0 A B Z 

88727 Yes F* 08-Oct-2015 08-Oct-2015 14-Jan-2016 99  2,665 27 (±1.3; 1-64) 3.3 6.1 7.0 2.0 16.3 64.9 0.3 0.9 (±0.02) 

102211 Yes U 10-Oct-2015 11-Oct-2015 19-Dec-2015 57 14 594 10 (±0.9; 1-26) 0.2 0.2 0.0 0.2 4.7 94.1 0.7 2.8 (±0.57) 

102218 Yes M 10-Oct-2015 11-Oct-2015 20-Jun-2016 249 2,4 8,659 33 (±1.1; 1-85) 4.1 10.1 12.2 3.8 15.1 54.7 0.0 0.7 (±0.02) 

111866 Yes F 04-Oct-2015 06-Nov-2015 15-Mar-2016 130 2 3,820 29 (±1.1; 4-65) 2.1 4.3 5.7 2.2 13.5 72.1 0.1 0.8 (±0.02) 

112722 Yes U 10-Oct-2015 11-Oct-2015 03-Apr-2016 174 2,2 6,390 37 (±1.0; 3-71) 12.8 17.0 11.4 2.5 18.9 37.4 0.0 0.7 (±0.02) 

131173 Yes M 30-Sep-2015 30-Sep-2015 08-Apr-2016 184 8,2 5,925 32 (±1.1; 2-70) 2.9 7.9 11.1 3.9 16.7 57.5 0.1 0.8 (±0.04) 

131175 Yes M 04-Oct-2015 04-Oct-2015 18-Jan-2016 97 11 2,077 21 (±1.1; 4-47) 0.7 1.7 1.7 1.1 11.2 83.4 0.2 1.2 (±0.13) 

131178 Yes F* 08-Oct-2015 09-Oct-2015 17-Jan-2016 101  2,167 21 (±1.1; 2-58) 0.8 1.7 4.7 1.6 14.4 76.7 0.2 1.1 (±0.03) 

131179 Yes M 02-Oct-2015 07-Dec-2015 22-Mar-2016 84 23,2 1,785 21 (±0.9; 6-50) 0.3 0.6 1.6 0.3 6.2 90.9 0.2 1.4 (±0.30) 

131182 Yes F 01-Oct-2015 02-Oct-2015 02-Apr-2016 150 30,5,2 6,264 42 (±1.2; 11-90) 10.0 27.9 22.0 5.8 12.1 22.1 0.0 0.7 (±0.12) 

131185 Yes F 02-Oct-2015 27-Nov-2015 06-Jan-2016 41  886 22 (±1.4; 1-44) 0.1 0.3 1.0 0.2 6.2 91.6 0.5 1.1 (±0.06) 

131187 Yes F 30-Sep-2015 01-Oct-2015 02-Jan-2016 94  1,876 20 (±0.9; 6-51) 1.4 1.6 2.6 0.9 10.5 82.9 0.0 1.2 (±0.04) 

131188 Yes F* 29-Sep-2015 30-Sep-2015 11-Dec-2015 73  1,310 18 (±0.7; 8-37) 1.0 2.8 2.3 0.8 13.4 79.7 0.0 1.3 (±0.04) 

131190 Yes F* 08-Oct-2015 08-Oct-2015 20-Mar-2016 90 76 2,334 26 (±0.9; 1-45) 5.8 13.5 13.4 4.4 18.4 44.5 0.0 1.7 (±0.78) 

                  

111871 No F 08-Oct-2015 09-Oct-2015 04-Nov-2015 26 2 308 12 (±1.1; 1-20) 1.9 4.5 4.2 1.0 14.0 74.4 0.0 2.1 (±0.20) 

112718 No M 05-Oct-2015 05-Oct-2015 13-Nov-2015 40  562 14 (±0.6; 2-21) 2.1 3.4 3.4 0.9 14.4 75.4 0.4 1.7 (±0.08) 

112721 No F* 09-Oct-2015 10-Nov-2015 28-Nov-2015 19  224 12 (±1.1; 5-24) 0.4 1.3 1.3 0.0 6.3 90.2 0.4 2.0 (±0.16) 

112723 No F* 06-Oct-2015 07-Oct-2015 18-Oct-2015 12  204 17 (±1.7; 2-24) 2.5 2.9 4.9 2.9 18.1 68.6 0.0 1.3 (±0.08) 



  

 

  

 

Table 4. Number of unique tags transmitting in any given month, and the number of state-space 

modelled data points (in brackets) within the feeding grounds (south of 60°S).  

Year Month Ross Sea A&B Seas Total 

2015     

 November 4*(119) 2*(48) 5 (167) 

 December 11†(717) 6†(487) 14 (1204) 

2016     

 January 5‡(373) 7‡(453) 11 (826) 

 February 2 (187) 4 (365) 6 (552) 

 March 3 (323) 4 (378) 7 (701) 

 April 2 (45) 2 (127) 4 (172) 

 May 1§(80) 1§ (39) 1 (119) 

 June 1 (77) 0 (0) 1 (77) 

In total, the tags of 14 individual whales transmitted data within the feeding grounds.   

A&B seas = Amundsen and Bellingshausen Seas.  

* PTT131182 travels through both regions during the month of November  

† PTT102218, PTT131175 and PTT131187 travel through both regions during the month of December  

‡ PTT131175 travels through both regions during the month of January  

§ PTT102218 travels through both regions during the month of May 



  

 

  

 

Table 5. Results of the best Linear Mixed Effect model, with logit transformed behavioral state 

(b) as a response variable and individual whales as a random effect. Higher b-values indicate an 

increasing likelihood of whales exhibiting ARS-foraging behavior. 

 

Parameter Estimate SE DF t-value p-value 

Intercept -9.49 1.10 3796 -8.61 <0.001 

Region_Ross Sea -0.55 0.58 3796 -0.96 0.34 

Month 1.91 0.38 3796 4.99 <0.001 

Month2 -0.35 0.06 3796 -5.40 <0.001 

dist ice lag 2 0.00 0.00 3796 0.26 0.80 

dist ice lag 22 -0.00 0.00 3796 -3.55 <0.001 

SSH -4.92 1.08 3796 -4.57 <0.001 

Region_Ross Sea*Month -0.93 0.48 3796 -1.95 0.05 

Region_Ross Sea*Month2 0.24 0.08 3796 3.16 <0.01 

Estimates are in log-odds scale. During model selection all models were fitted using maximum likelihood 

for comparing models with different fixed effects. The best model was then fitted with restricted 

maximum likelihood to obtain final parameter estimates. Variables with a significant parameter 

estimate (<0.05) are in bold.  



  

 

  

 

Figure legends 

Figure 1: Migration pathways for 18 Oceania humpback whales satellite-tagged at the 

Kermadec Islands, New Zealand. Left column: State-space model estimated behavioral states: 

red dot = area restricted search (ARS; inferred foraging); black dot = inferred transit; grey dot = 

uncertain behavioral mode. Bottom left: Tracks of 14 whales whose tags transmitted on their 

Southern Ocean feeding grounds with circles denoting the approximate locations of the two 

key foraging grounds. The background color scale indicates the bathymetric depth (derived 

from the International Bathymetric Chart of the Southern Ocean (IBCSO) digital bathymetric 

model of the circum-Antarctic waters). Right column: Satellite tracks color coded by month. 

 

Figure 2. a) Average behavioral mode (b) by month. Values closer to 1 indicate transiting 

behavior and values closer to 2 indicate ARS-foraging behavior, and b) distance to ice edge (km; 

all locations) by month. Black dashed = all whales, green = Ross Sea, blue = Amundsen & 

Bellingshausen Seas.  

 

Figure 3. The relationship between significant explanatory variables a) month, b) distance to the 

ice edge (2-month lag) and c) SSH (sea surface height) and the logit transformed behavioral 

mode (b). Green = Ross Sea, Blue = Amundsen and Bellingshausen Seas. Higher predicted b(logit) 

values indicate an increasing likelihood of whales exhibiting ARS-foraging behavior. A negative 

value for ‘distance to ice edge’ indicates that the whale has moved past the point where the ice 

edge was two months prior. Simplified univariate regression lines from the mixed-effect model 

analysis (without random effects and autocorrelation structure) were added to b) and c) to 

highlight the overall trend in the data for the sample population.  
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Electronic Supplementary Material, Figure ESM 1. Spearman correlation matrix of the 10 covariates used in the statistical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

  

 

 

Electronic Supplementary Material, Table ESM 2. Posterior sample means and 95% confidence intervals for movement parameters (transit, and area-

restricted search; ARS) estimated using a hierarchical state-space model. γ = autocorrelation in speed and direction, θ = turning angles (radians). 

 

 State Lower 95% Mean Upper 95% 

γ ARS 0.0491 0.0497 0.0503 

Transit 0.9545 0.9546 0.9547 

θ ARS 2.9088 2.9156 2.9224 

Transit 0.0042 0.0043 0.0044 

 




